Documentation
Basics
PauliStrings.Operator
— MethodOperator(N::Int)
Initialize an empty operator on N qubits
PauliStrings.Operator
— MethodOperator(o::OperatorTS1D)
Convert an OperatorTS1D to an Operator
PauliStrings.OperatorTS1D
— MethodOperatorTS1D(o::Operator; full=true)
Initialize a 1D translation invariant operator from an Operator $O=\sum_i o_i O_i$ where $O_i=T_i(O_0)$ and $T_i$ is the i-sites translation operator. Set full=true if passing $O$, an Operator that is supported on the whole chain (i.e converting from a translation symmetric Operator
) Set full=false if passing $O_0$,a local term o such that the full operator is $O=\sum_i o_i T_i(O_0)$
Base.length
— MethodBase.length(o::Operator)
Base.length(o::OperatorTS1D)
Number of pauli strings in an operator
Example
julia> A = Operator(4)
julia> A += "X111"
julia> A += "XYZ1"
julia> A += 2, "Y", 4
julia> length(A)
3
PauliStrings.eye
— Methodeye(N::Int)
Identity operator on N qubits
Base.:+
— MethodBase.:+(o::Operator, args::Tuple{Number, Vararg{Any}})
Base.:+(o::Operator, args::Tuple{Vararg{Any}})
Base.:+(o::Operator, term::Tuple{Number, String})
Base.:+(o::Operator, term::String)
Main functions to contruct spin operators. Identical signatures are available for -
.
Examples
k-local terms can be added by adding a tuple to the operator. The first element of the tuple is an optional coeficient. The other element are couples (symbol,site) where symbol can be "X", "Y", "Z", "Sx", "Sy", "Sz", "S+", "S-" and site is an integer specifying the site on wich the symbol is acting.
A = Operator(4)
A += 2, "X",1,"X",2
A += 3, "Y",1,"X",2
A += "X",3,"X",4
A += 4,"Z",3
A += 5.2,"X",1,"Y",2,"Z",3
julia> A
(4.0 + 0.0im) 11Z1
(3.0 - 0.0im) YX11
(1.0 + 0.0im) 11XX
(2.0 + 0.0im) XX11
(5.2 - 0.0im) XYZ1
Full strings can also be added:
A = Operator(4)
A += 2, "1XXY"
A += 2im, "11Z1"
julia> A
(0.0 + 2.0im) 11Z1
(2.0 - 0.0im) 1XXY
Base.:+
— Method+(x, y...)
Addition operator. x+y+z+...
calls this function with all arguments, i.e. +(x, y, z, ...)
.
Examples
julia> 1 + 20 + 4
25
julia> +(1, 20, 4)
25
Base.:+
— Method+(x, y...)
Addition operator. x+y+z+...
calls this function with all arguments, i.e. +(x, y, z, ...)
.
Examples
julia> 1 + 20 + 4
25
julia> +(1, 20, 4)
25
Base.:+(o::Operator, args::Tuple{Number, Vararg{Any}})
Base.:+(o::Operator, args::Tuple{Vararg{Any}})
Base.:+(o::Operator, term::Tuple{Number, String})
Base.:+(o::Operator, term::String)
Main functions to contruct spin operators. Identical signatures are available for -
.
Examples
k-local terms can be added by adding a tuple to the operator. The first element of the tuple is an optional coeficient. The other element are couples (symbol,site) where symbol can be "X", "Y", "Z", "Sx", "Sy", "Sz", "S+", "S-" and site is an integer specifying the site on wich the symbol is acting.
A = Operator(4)
A += 2, "X",1,"X",2
A += 3, "Y",1,"X",2
A += "X",3,"X",4
A += 4,"Z",3
A += 5.2,"X",1,"Y",2,"Z",3
julia> A
(4.0 + 0.0im) 11Z1
(3.0 - 0.0im) YX11
(1.0 + 0.0im) 11XX
(2.0 + 0.0im) XX11
(5.2 - 0.0im) XYZ1
Full strings can also be added:
A = Operator(4)
A += 2, "1XXY"
A += 2im, "11Z1"
julia> A
(0.0 + 2.0im) 11Z1
(2.0 - 0.0im) 1XXY
Base.:+
— Method+(x, y...)
Addition operator. x+y+z+...
calls this function with all arguments, i.e. +(x, y, z, ...)
.
Examples
julia> 1 + 20 + 4
25
julia> +(1, 20, 4)
25
Operations
Base.:+
— Methodadd(o1::Operator, o2::Operator)
Base.:+(o1::Operator, o2::Operator)
Base.:+(o::Operator, a::Number)
Base.:+(a::Number, o::Operator)
Add two operators together or add a number to an operator
Example
A = Operator(4)
A += "XYZ1"
A += 1, "Y", 4
B = Operator(4)
B += 2, "Y", 2, "Y", 4
B += 1, "Z", 3
julia> A
(1.0 - 0.0im) 111Y
(1.0 - 0.0im) XYZ1
julia> B
(1.0 + 0.0im) 11Z1
(2.0 - 0.0im) 1Y1Y
julia> A+B
(1.0 + 0.0im) 11Z1
(2.0 - 0.0im) 1Y1Y
(1.0 - 0.0im) 111Y
(1.0 - 0.0im) XYZ1
julia> A+5
(1.0 - 0.0im) 111Y
(1.0 - 0.0im) XYZ1
(5.0 + 0.0im) 1111
Base.:+
— Method+(x, y...)
Addition operator. x+y+z+...
calls this function with all arguments, i.e. +(x, y, z, ...)
.
Examples
julia> 1 + 20 + 4
25
julia> +(1, 20, 4)
25
Base.:+
— Method+(x, y...)
Addition operator. x+y+z+...
calls this function with all arguments, i.e. +(x, y, z, ...)
.
Examples
julia> 1 + 20 + 4
25
julia> +(1, 20, 4)
25
Base.:*
— MethodBase.:*(o1::Operator, o2::Operator)
Base.:*(o::Operator, a::Number)
Base.:*(a::Number, o::Operator)
Multiply two operators together or an operator with a number
Example
A = Operator(4)
A += "XYZ1"
A += 1, "Y", 4
B = Operator(4)
B += 2, "Y", 2, "Y", 4
B += 1, "Z", 3
julia> A
(1.0 - 0.0im) 111Y
(1.0 - 0.0im) XYZ1
julia> B
(1.0 + 0.0im) 11Z1
(2.0 - 0.0im) 1Y1Y
julia> A*B
(2.0 - 0.0im) X1ZY
(1.0 - 0.0im) 11ZY
(2.0 - 0.0im) 1Y11
(1.0 - 0.0im) XY11
julia> A*5
(5.0 - 0.0im) 111Y
(5.0 - 0.0im) XYZ1
Base.:*
— Method*(x, y...)
Multiplication operator. x*y*z*...
calls this function with all arguments, i.e. *(x, y, z, ...)
.
Examples
julia> 2 * 7 * 8
112
julia> *(2, 7, 8)
112
Base.:*
— Method*(x, y...)
Multiplication operator. x*y*z*...
calls this function with all arguments, i.e. *(x, y, z, ...)
.
Examples
julia> 2 * 7 * 8
112
julia> *(2, 7, 8)
112
Base.:-
— MethodBase.:-(o::Operator)
Base.:-(o1::Operator, o2::Operator)
Base.:-(o::Operator, a::Real)
Base.:-(a::Real, o::Operator)
Subtraction between operators and numbers
Base.:-
— Method-(x, y)
Subtraction operator.
Examples
julia> 2 - 3
-1
julia> -(2, 4.5)
-2.5
Base.:-
— Method-(x, y)
Subtraction operator.
Examples
julia> 2 - 3
-1
julia> -(2, 4.5)
-2.5
Base.:-
— Method-(x, y)
Subtraction operator.
Examples
julia> 2 - 3
-1
julia> -(2, 4.5)
-2.5
PauliStrings.com
— Methodcom(o1::Operator, o2::Operator; epsilon::Real=0, maxlength::Int=1000)
com(o1::OperatorTS1D, o2::OperatorTS1D; anti=false)
Commutator of two operators. Set anti=true to compute the anti-commutator.
Example
julia> A = Operator(4)
julia> A += "X111"
julia> B = Operator(4)
julia> B += "Z111"
julia> B += "XYZ1"
julia> com(A,B)
(0.0 - 2.0im) Y111
PauliStrings.diag
— Methoddiag(o::Operator)
diag(o::OperatorTS1D)
Diagonal of an operator. Keep the strings that only contain 1's or Z's. Return another operator.
Example
julia> A = Operator(4)
julia> A += 2,"1111"
julia> A += 3,"XYZ1"
julia> A += 3,"Z11Z"
julia> diag(A)
(2.0 + 0.0im) 1111
(3.0 + 0.0im) Z11Z
PauliStrings.trace
— Methodtrace(o::Operator)
trace(o::OperatorTS1D)
Trace of an operator
Example
julia> A = Operator(4)
julia> A += 2,"1111"
julia> A += 3,"XYZ1"
julia> trace(A)
32.0 + 0.0im
PauliStrings.opnorm
— Methodopnorm(o::Operator)
opnorm(o::OperatorTS1D)
Frobenius norm
Example
julia> A = Operator(4)
julia> A += 2,"X",2
julia> A += 1,"Z",1,"Z",3
julia> opnorm(A)
8.94427190999916
PauliStrings.dagger
— Methoddagger(o::Operator)
dagger(o::OperatorTS1D)
Conjugate transpose
Example
A = Operator(3)
A += 1im,"X",2
A += 1,"Z",1,"Z",3
julia> A
(1.0 + 0.0im) Z1Z
(0.0 + 1.0im) 1X1
julia> dagger(A)
(1.0 - 0.0im) Z1Z
(0.0 - 1.0im) 1X1
PauliStrings.ptrace
— Methodptrace(o::Operator, keep::Vector{Int})
Partial trace.
keep
is list of qubits indices to keep starting at 1 note that this still returns an operator of size N and doesnt permute the qubits this only gets rid of Pauli strings that have no support on keep and add their coeficient*2^N to the identity string
Example
A = Operator(5)
A += "XY1XZ"
A += "XY11Z"
julia> ptrace(A, [3,4])
(1.0 - 0.0im) XY1XZ
(8.0 - 0.0im) 11111
julia> ptrace(A, [1,5])
(1.0 - 0.0im) XY1XZ
(1.0 - 0.0im) XY11Z
Power and moments
Base.:^
— MethodBase.:^(o::Operator, k::Int)
kth power of o. Same as oppow
.
PauliStrings.oppow
— Methodoppow(o::Operator, k::Int)
oppow(o::OperatorTS1D, k::Int)
kth power of o. Same as ^
.
PauliStrings.trace_product
— Methodtrace_product(o1::Operator, o2::Operator; scale=0)
trace_product(o1::OperatorTS1D, o2::OperatorTS1D; scale=0)
Efficiently compute trace(o1*o2)
. This is much faster than doing trace(o1*o2)
. If scale
is not 0, then the result is normalized such that trace(identity)=scale.
PauliStrings.trace_product
— Methodtrace_product(A::Operator, k::Int, B::Operator, l::Int; scale=0)
trace_product(A::OperatorTS1D, k::Int, B::OperatorTS1D, l::Int; scale=0)
Efficiently compute trace(A^k*B^l)
. This is much faster than doing trace(A^k*B^l)
.
If scale
is not 0, then the result is normalized such that trace(identity)=scale.
PauliStrings.trace_product
— Methodtrace_product(A::Operator, k::Int; scale=0)
Efficiently compute trace(A^k)
. This is much faster than doing trace(A^k)
.
If scale
is not 0, then the result is normalized such that trace(identity)=scale.
PauliStrings.moments
— Methodmoments(H::Operator, kmax::Int; start=1, scale=0)
moments(H::OperatorTS1D, kmax::Int; start=1, scale=0)
Compute the first kmax moments of H. start is the first moment to start from.
If scale is not 0, then the result is normalized such that trace(identity)=scale.
Random operators
PauliStrings.rand_local1
— Methodrand_local2(N::Int)
Random 1-local operator
PauliStrings.rand_local2
— Methodrand_local2(N::Int)
Random 2-local operator
PauliStrings.rand_local1_TS1D
— Methodrand_local1_TS1D(N::Int)
Random 1-local OperatorTS1D
PauliStrings.rand_local2_TS1D
— Methodrand_local2_TS1D(N::Int)
Random 2-local OperatorTS1D
Truncation and noise
Base.truncate
— Methodtruncate(o::Operator, N::Int; keepnorm::Bool = false)
Remove all terms of length > N. Keep all terms of length <= N. i.e remove all M-local terms with M>N
Example
A = Operator(4)
A += "X",1,"X",2
A += "Z",1,"Z",2,"Z",4
julia> A
(1.0 + 0.0im) ZZ1Z
(1.0 + 0.0im) XX11
julia> ps.truncate(A,2)
(1.0 + 0.0im) XX11
PauliStrings.trim
— Methodtrim(o::Operator, N::Int; keepnorm::Bool = false, keep::Operator=Operator(N))
Keep the first N terms with largest coeficients.
keepnorm
is set to true to keep the norm of o.
keep
is an operator that specify a set of strings that cannot be removed
Example
A = Operator(4)
A += 1,"XXXX"
A += 2,"XX11"
A += 3,"XX1X"
A += 4,"ZZXX"
B = Operator(4)
B += 1,"XX11"
B += 1,"XX1X"
julia> trim(A,2)
(4.0 + 0.0im) ZZXX
(3.0 + 0.0im) XX1X
julia> trim(A,2;keep=B)
(4.0 + 0.0im) ZZXX
(3.0 + 0.0im) XX1X
(2.0 + 0.0im) XX11
PauliStrings.prune
— Method prune(o::Operator, alpha::Real; keepnorm::Bool = false)
Keep terms with probability 1-exp(-alpha*abs(c)) where c is the weight of the term
PauliStrings.cutoff
— Methodcutoff(o::Operator, epsilon::Real; keepnorm::Bool = false)
Remove all terms with weight < epsilon
Example
A = Operator(4)
A += 1,"XXXX"
A += 2,"XX11"
A += 3,"XX1X"
A += 4,"ZZXX"
julia> cutoff(A, 2.5)
(3.0 + 0.0im) XX1X
(4.0 + 0.0im) ZZXX
PauliStrings.add_noise
— Methodadd_noise(o::Operator, g::Real)
Add depolarizing noise that make the long string decays. g
is the noise amplitude.
Example
A = add_noise(A, 0.1)
Reference
PauliStrings.k_local_part
— Methodk_local_part(o::Operator, k::Int; atmost=false)
Return the k-local part of o. I.e all the strings of lenght k. Set atmost=true
to return the 'at most' k-local part, i.e all the strings of length <= k.
Example
A = Operator(4)
A += "X",1,"X",2
A += "Z",1,"Z",2,"Z",4
A += "1X11"
julia> A
(1.0 + 0.0im) ZZ1Z
(1.0 + 0.0im) 1X11
(1.0 + 0.0im) XX11
julia> k_local_part(A,2)
(1.0 + 0.0im) XX11
Algorithms
PauliStrings.lanczos
— Methodlanczos(H::Operator, O::Operator, steps::Int, nterms::Int; keepnorm=true, maxlength=1000, returnOn=false)
lanczos(H::OperatorTS1D, O::OperatorTS1D, steps::Int, nterms::Int; keepnorm=true, maxlength=1000, returnOn=false)
Compute the first steps
lanczos coeficients for Hamiltonian H
and initial operator O
At every step, the operator is trimed with trim
and only nterms
are kept.
Using maxlength
speeds up the commutator by only keeping terms of length <= maxlength
Set returnOn=false
to save the On's at each step. Then the function returns a pair of lists (bn, On). The first operators of the list On is O
PauliStrings.lanczos
— Methodlanczos(H::Operator, O::Operator, steps::Int, nterms::Int; keepnorm=true, maxlength=1000, returnOn=false)
lanczos(H::OperatorTS1D, O::OperatorTS1D, steps::Int, nterms::Int; keepnorm=true, maxlength=1000, returnOn=false)
Compute the first steps
lanczos coeficients for Hamiltonian H
and initial operator O
At every step, the operator is trimed with trim
and only nterms
are kept.
Using maxlength
speeds up the commutator by only keeping terms of length <= maxlength
Set returnOn=false
to save the On's at each step. Then the function returns a pair of lists (bn, On). The first operators of the list On is O
PauliStrings.rk4
— Methodrk4(H::Operator, O::Operator, dt::Real; hbar::Real=1, heisenberg=false, M=2^20, keep::Operator=Operator(N))
Single step of Runge–Kutta-4 with time independant Hamiltonian. Returns O(t+dt). Set heisenberg=true
for evolving an observable in the heisenberg picture. If heisenberg=false
then it is assumed that O is a density matrix.
PauliStrings.rk4
— Methodrk4(H::Function, O::Operator, dt::Real, t::Real; hbar::Real=1, heisenberg=false)
Single step of Runge–Kutta-4 with time dependant Hamiltonian. H
is a function that takes a number (time) and returns an operator.
PauliStrings.equivalence_class
— Methodequivalence_class(A1::Union{Operator64,Operator128}, H::Union{Operator64,Operator128})
Equivalence class of A1 with respect to Hamiltonian H, as defined in https://arxiv.org/abs/2406.13026 Algorithm 1. The equivalence class is returned as an operator with coeficients 1 Use get_pauli
to access individual strings.
PauliStrings.frustration_graph
— Methodfrustration_graph(o::Operator)
Construct the frustration graph, or anticommutation graph of an operator o. Returns a sparse adjacency matrix. Each vertex represents a pauli string of the operator, and two vertices are connected by an edge if the corresponding pauli strings anticommute. The vertices are labeled by the index of the pauli string in the operator. Use get_pauli
to access individual strings.
Construction
PauliStrings.all_strings
— Methodall_strings(N::Int)
Return the sum of all the strings supported on N spins, with coeficients 1
PauliStrings.all_k_local
— Methodall_k_local(N::Int, k::Int)
Return the sum of all the k-local strings supported on N spins, with coeficients 1. These are k-local only strings, not including strings shorter than k.
julia> all_k_local(2, 1)
(1.0 + 0.0im) X1
(1.0 + 0.0im) 1X
(1.0 + 0.0im) Z1
(1.0 - 0.0im) Y1
(1.0 + 0.0im) 1Z
(1.0 - 0.0im) 1Y
PauliStrings.all_x
— Methodall_x(N::Int)
Return the sum of all the strings supported on N spins with only x and with coeficients 1
julia> all_x(2)
(1.0 + 0.0im) 11
(1.0 + 0.0im) X1
(1.0 + 0.0im) 1X
(1.0 + 0.0im) XX
PauliStrings.all_y
— Methodall_y(N::Int)
Return the sum of all the strings supported on N spins with only y and with coeficients 1
julia> all_y(2)
(1.0 + 0.0im) 11
(1.0 - 0.0im) Y1
(1.0 - 0.0im) 1Y
(1.0 - 0.0im) YY
PauliStrings.all_z
— Methodall_z(N::Int)
Return the sum of all the strings supported on N spins with only z and with coeficients 1
julia> all_z(2)
(1.0 + 0.0im) 11
(1.0 + 0.0im) Z1
(1.0 + 0.0im) 1Z
(1.0 + 0.0im) ZZ
PauliStrings.set_coefs
— Methodset_coefs(o::Operator, coefs::Vector{T}) where T <: Number
Sets the coeficient of o
to coefs
. Inplace.
A = Operator(4)
A += 2, "1XXY"
A += 3, "11Z1"
julia> A
(3.0 + 0.0im) 11Z1
(2.0 - 0.0im) 1XXY
julia> set_coefs(A, [5,6])
julia> A
(5.0 + 0.0im) 11Z1
(6.0 - 0.0im) 1XXY
Tools
PauliStrings.compress
— Methodcompress(o::Operator)
Accumulate repeated terms and remove terms with a coeficient smaller than 1e-20
PauliStrings.op_to_strings
— Methodop_to_strings(o::Operator)
takes an operator, return (coefs, strings) where coefs is a list of numbers and strings is a list of pauli string coefs[i] multiply strings[i]
PauliStrings.get_coefs
— Methodget_coefs(o::Operator)
Return the list of coeficients in front of each strings.
PauliStrings.op_to_dense
— Methodop_to_dense(o::Operator)
op_to_dense(o::OperatorTS1D)
Convert an operator to a dense matrix.
PauliStrings.shift_left
— Methodshift_left(O::Operator)
Shift evey string left so they start on site 1. This usefull for using translation symmetry in 1D systems
Example
A = Operator(4)
A += "XYZ1"
A += "11ZZ"
A += "1XZY"
A += "ZZ11"
julia> shift_left(A)
(1.0 - 0.0im) XZY1
(1.0 - 0.0im) XYZ1
(2.0 + 0.0im) ZZ11
PauliStrings.xcount
— Methodxcount(v::Unsigned, w::Unsigned)
Count the number of X in a string
PauliStrings.ycount
— Methodycount(v::Unsigned, w::Unsigned)
Count the number of Y in a string
PauliStrings.zcount
— Methodzcount(v::Unsigned, w::Unsigned)
Count the number of Z in a string
PauliStrings.is_ts
— Methodis_ts(o::Operator)
return true if o is translation symmetric
PauliStrings.get_coef
— Methodget_coef(o::Operator, v::UInt, w::UInt)
get_coef(o::Operator, v::Integer, w::Integer)
Return the coeficient of the string v,w in o.
PauliStrings.get_pauli
— Methodget_pauli(o::Operator, i::Int)
Return an operator that represent the i-th pauli string of `o'. Does not return the string multiplied by the coeficient. Only the string.
Low level
PauliStrings.com
— Methodcom(v1::Unsigned, w1::Unsigned, v2::Unsigned, w2::Unsigned)
Commutator of two pauli strings in integer representation Return k,v,w
PauliStrings.string_to_vw
— Methodstring_to_vw(pauli::String)
Convert a string to two integers (v,w)
PauliStrings.vw_to_string
— Methodvw_to_string(v::Int, w::Unsigned, N::Unsigned)
convert v,w to a string and a phase
PauliStrings.vw_in_o
— Methodvw_in_o(v::Unsigned, w::Unsigned, o::Operator)
Return true is string (v,w) is in o
Base.push!
— MethodBase.push!(o::Operator, c::Number, v::Unsigned, w::Unsigned)
Add string c,(v,w) to operator o. Note that c is not the coeficient in front of the pauli string but the coeficient in front of the real string. A factor (1im)^ycount(v,w) relate the two.
Index
PauliStrings.Operator
PauliStrings.Operator
PauliStrings.OperatorTS1D
Base.:*
Base.:*
Base.:*
Base.:+
Base.:+
Base.:+
Base.:+
Base.:+
Base.:+
Base.:+
Base.:-
Base.:-
Base.:-
Base.:-
Base.:^
Base.length
Base.push!
Base.truncate
PauliStrings.add_noise
PauliStrings.all_k_local
PauliStrings.all_strings
PauliStrings.all_x
PauliStrings.all_y
PauliStrings.all_z
PauliStrings.com
PauliStrings.com
PauliStrings.compress
PauliStrings.cutoff
PauliStrings.dagger
PauliStrings.diag
PauliStrings.equivalence_class
PauliStrings.eye
PauliStrings.frustration_graph
PauliStrings.get_coef
PauliStrings.get_coefs
PauliStrings.get_pauli
PauliStrings.is_ts
PauliStrings.k_local_part
PauliStrings.lanczos
PauliStrings.lanczos
PauliStrings.moments
PauliStrings.op_to_dense
PauliStrings.op_to_strings
PauliStrings.opnorm
PauliStrings.oppow
PauliStrings.prune
PauliStrings.ptrace
PauliStrings.rand_local1
PauliStrings.rand_local1_TS1D
PauliStrings.rand_local2
PauliStrings.rand_local2_TS1D
PauliStrings.rk4
PauliStrings.rk4
PauliStrings.set_coefs
PauliStrings.shift_left
PauliStrings.string_to_vw
PauliStrings.trace
PauliStrings.trace_product
PauliStrings.trace_product
PauliStrings.trace_product
PauliStrings.trim
PauliStrings.vw_in_o
PauliStrings.vw_to_string
PauliStrings.xcount
PauliStrings.ycount
PauliStrings.zcount